Lentile subțiri
Definiție
O asociere de 2 dioptrii și mediul transparent dintre dioptrii.
Relația punctelor conjugate
$$ \frac{1}{x_2} - \frac{1}{x_1} = (\frac{n_l}{n_m} - 1)(\frac{1}{R_1} - \frac{1}{R_2}) $$
$$
\displaylines{
\frac{n_2}{x'_1} - \frac{n_1}{x_1} = \frac{n_2 - n_1}{R_1} \\
\frac{n_3}{x_2} - \frac{n_2}{-(d - x'_1)} = \frac{n_3 - n_2}{R_2} \\
\text{Dacă} \ n_3 = n_1 \implies \frac{n_1}{x_2} - \frac{n_2}{-(d - x'_1)} = \frac{n_1 - n_2}{R_2} \\
\\
\text{Pentru lentile subțiri:} \ d \ll -x_1, \ R, \ x'_1, \ etc \\
\\
\left.
\begin{aligned}
\frac{n_2}{x'_1} - \frac{n_1}{x_1} = \frac{n_2 - n_1}{R_1} \\
\frac{n_1}{x_2} - \frac{n_2}{-(d - x'_1)} = \frac{n_1 - n_2}{R_2} \\
\end{aligned}
\right) (+) \\
\left. \frac{n_1}{x_2} - \frac{n_1}{x_1} = (n_2 - n_1)(\frac{1}{R_1} - \frac{1}{R_2}) \right\vert :n_1 \implies \\
\\
\implies \bf{\frac{1}{x_2} - \frac{1}{x_1} = (\frac{n_l}{n_m} - 1)(\frac{1}{R_1} - \frac{1}{R_2})}
}
$$