Microscopul

Puterea

$$ \displaylines{ \begin{equation} \left. \begin{aligned} P = \frac{ \tan{\alpha_2} }{y_2} \ \\ x_1' \simeq -f_2 \implies \tan{\alpha_2} = \frac{y'}{-f_2} \ \end{aligned} \right\vert \implies \begin{aligned} P = \frac{1}{-f_2} \frac{y'}{y_1} \end{aligned} \end{equation} \\ e \gg f_1 \implies \frac{y'}{y_1} = \frac{x_2}{x_1} \simeq \frac{f_1 + e}{-f_1} \simeq \frac{e}{-f_1} \\ P = \frac{e}{f_1 f_2} } $$

Grosismentul

$$ \displaylines{ \begin{equation} \left. \begin{aligned} G = \frac{ \tan{\alpha_2} }{ \tan{\alpha_1} } \ \\ \tan{\alpha_1} = \frac{y_1}{\delta} \ \\ \tan{\alpha_2} = \frac{y'}{-f_2} \ \\ \end{aligned} \right\vert \implies \begin{aligned} G = \delta \frac{1}{-f_2} \frac{y'}{y_1} = \delta P \end{aligned} \end{equation} \\ \delta = 0,25 \rm{m} = \frac{1}{4} \rm{m} \implies G = \frac{P}{4} } $$