Marirea liniară transversală
$$
\displaylines {
\tan{i} = \frac{y_1}{- x_1} \quad \tan{i} \simeq \sin{i} \implies \sin{i} = \frac{y_1}{- x_1} \\
\tan{r} = \frac{- y_2}{x_2} \quad \tan{r} \simeq \sin{r} \implies \sin{r} = \frac{-y_2}{x_2} \\
\\
\frac{ \sin{r} }{ \sin{i} } = \frac{- y_2}{y_1} \cdot \frac{-x_1}{x_2} \implies \bf{ \beta = \frac{x_2 n_1}{x_1 n_2} }
}
$$